翻訳と辞書 |
Italian geometers : ウィキペディア英語版 | Italian school of algebraic geometry
In relation with the history of mathematics, the Italian school of algebraic geometry refers to the work over half a century or more (flourishing roughly 1885–1935) done internationally in birational geometry, particularly on algebraic surfaces. There were in the region of 30 to 40 leading mathematicians who made major contributions, about half of those being in fact Italian. The leadership fell to the group in Rome of Guido Castelnuovo, Federigo Enriques and Francesco Severi, who were involved in some of the deepest discoveries, as well as setting the style. ==Algebraic surfaces== The emphasis on algebraic surfaces — algebraic varieties of dimension two — followed on from an essentially complete geometric theory of algebraic curves (dimension 1). The position in around 1870 was that the curve theory had incorporated with Brill–Noether theory the Riemann–Roch theorem in all its refinements (via the detailed geometry of the theta-divisor). The classification of algebraic surfaces was a bold and successful attempt to repeat the division of curves by their genus ''g''. It corresponds to the rough classification into the three types: ''g'' = 0 (projective line); ''g'' = 1 (elliptic curve); and ''g'' > 1 (Riemann surfaces with independent holomorphic differentials). In the case of surfaces, the Enriques classification was into five similar big classes, with three of those being analogues of the curve cases, and two more (elliptic fibrations, and K3 surfaces, as they would now be called) being with the case of two-dimension abelian varieties in the 'middle' territory. This was an essentially sound, breakthrough set of insights, recovered in modern complex manifold language by Kunihiko Kodaira in the 1950s, and refined to include mod p phenomena by Zariski, the Shafarevich school and others by around 1960. The form of the Riemann–Roch theorem on a surface was also worked out.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Italian school of algebraic geometry」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|